RGS2 is an innate immune checkpoint for TLR4 and Gαq-mediated IFNγ generation and lung injury

bioRxiv [Preprint]. 2023 Sep 23:2023.09.22.559016. doi: 10.1101/2023.09.22.559016.

Abstract

IFNγ, a type II interferon secreted by immune cells, augments tissue responses to injury following pathogenic infections leading to lethal acute lung injury (ALI). Alveolar macrophages (AM) abundantly express Toll-like receptor-4 and represent the primary cell type of the innate immune system in the lungs. A fundamental question remains whether AM generation of IFNg leads to uncontrolled innate response and perpetuated lung injury. LPS induced a sustained increase in IFNg levels and unresolvable inflammatory lung injury in the mice lacking RGS2 but not in RGS2 null chimeric mice receiving WT bone marrow or receiving the RGS2 gene in AM. Thus, indicating RGS2 serves as a gatekeeper of IFNg levels in AM and thereby lung's innate immune response. RGS2 functioned by forming a complex with TLR4 shielding Gaq from inducing IFNg generation and AM inflammatory signaling. Thus, inhibition of Gaq blocked IFNg generation and subverted AM transcriptome from being inflammatory to reparative type in RGS2 null mice, resolving lung injury.

Highlights: RGS2 levels are inversely correlated with IFNγ in ARDS patient's AM.RGS2 in alveolar macrophages regulate the inflammatory lung injury.During pathogenic insult RGS2 functioned by forming a complex with TLR4 shielding Gαq from inducing IFNγ generation and AM inflammatory signaling.

etoc blurb: Authors demonstrate an essential role of RGS2 in macrophages in airspace to promoting anti-inflammatory function of alveolar macrophages in lung injury. The authors provided new insight into the dynamic control of innate immune response by Gαq and RGS2 axis to prevent ALI.

Publication types

  • Preprint